
HUMBOLDT UNIVERSITY BERLIN
DEPARTMENT OF COMPUTER SCIENCE

SOFTWARE ENGINEERING GROUP

Dipl.-Inf. M. Hildebrandt

Reengineering of a chaotic legacy
software system

Overview

• the project behind: ATEO
– Project
– SAM & ATEO software system

• starting point: SAMs 2.0
– history of development
– problems

• reengineering
– steps and their results
– reengineered architecture

• comparision of variants
– architectures
– implementations

2

PROJECT ATEO

3

The Project ATEO

• part of the research training group prometei

– cooperation of several universities and institutes

– DFG funded

• Arbeitsteilung Entwickler-Operateur (ATEO)

– engl.: Division of Labor between Developers and
Operators

– Researching the optimal function allocation between
• humans (operator) and

• machines (designed by developers)

4

Socially Augmented Microworld (SAM)

• data gained from computer-based experiments
– models a dynamic process as a tracking task

– microworld inhabitants (probands) as social factor:
enable an unpredictable but retrospectively explainable
behaviour

– operator (proband) / automatic as external factors
• supervising and controlling the process

5

SAM within the ATEO system

• SAM
– simulating tracking task
– logging experimental data

• ATEO Master Display (AMD)
– display and control panel of the operator
– supervising and controlling of the tracking process

• Automatics (AM)
– designed and implemented by developers
– supervising and controlling of the tracking process

6

SAM

AM

AMD

Starting point: SAMs

• implemented in Smalltalk/Squeak
– integrated runtime and development environment (VM)

– open source, freely available

• increased quality requirements concerning
– Stability

experiments must be conducted without interruptions

– Correctness
experiments must be conducted in the way they are designed

– Performance
soft real-time application, the simulation must be fluent

– Maintainability
requirements change often (according to new research data)

7

Starting point: SAMs (cont.)

• historically grown software (since 2004)
– many changes

– alternating developers (graduands, psychologists)

– no software engineering
• no requirements engineering

• no architecture design

• no quality management

• no change management

• so: unknown architecture, i.e.
– overall structure, dependencies unknown

– quality properties only vaguely known
• bad maintainability

• bad performance

8

REENGINEERING

9

Approach: Overview

• Reengineering in 4 steps:

1. Reverse Engineering
analysis and documentation of the existing architecure

2. Restructuring
transformation of the existing architecture

3. Forward Engineering
requirements, OOA, OOD

4. Merging and Implementation
merging of the intermediate results

10

1. Reverse Engineering

• Reverse Engineering of
– Requirements:

software specification (Use Cases etc)

– Design:
architecture (diagrams)

– Implementation:
code comments, class descriptions

• further analysis (tool based)
– extraction of hidden dependencies between classes (via

globals)

– modeling call dependencies as a directed graph

– depth-first cycle search

– graph coloring (identifying SCCs)

11

SAMs architecture: call dependencies

12

SAMs architecture: hidden dependencies

13

Identified Central Issues

• modularization / structure
– 1 layer, 1 package, 12 classes, 45 dependencies
– no design patterns applied
– no separation of Model, View and Control

• cyclomatic dependencies
– 56 (simple) cyclomatic dependencies
– 10 classes are on a strongly connected component (SCC)

• global variables
– 25 commonly used variables
– inducing hidden dependencies

• outcome: very low maintainability, heavy impact on
– understandability
– reusability
– changeability
– testability

14

2. Restructuring

• transformation of the legacy architecture
– into a layered architecture (while keeping functionality)
– decomposition and arranging of the classes to the layers

• based on
– results of Reverse Engineering: central issues

• no cycles, no global variables, proper modularization

– application of architecture principles / patterns
• loose coupling, high coherence
• separation of concerns / modularization
• self-documentation
• …

• result
– first proposal for a layered architecture of SAMj 2.0

15

2. Restructuring: SAM 2.0

16

track
track, objects on

track

simlogic
calculations /

constraints

input
read in user input

graphics engine
dialogs, windows, views of

track, objects

sound
playback of sounds

loggingIO
writing data to files

ExpControl
initializes model, view,

handles user input, flow
control, …

interventions
interventions into

tracking

hints
visual, auditve hints

SAMjApp
initializes the application,

program entry point

OPControl
control of hints and

interventions

configIO
reading from files

3. Forward Engineering

• building the domain model
– from the reverse engineered requirements

– performing OOA
• deriving use cases, finding packages

• identifying classes, methods, attributes, associations, …

• building the architecture
– from domain model

– performing OOD
• designing view, control

• redesigning model (if needed)

• connecting layers

– consideration of architecture patterns / principals

17

3. Forward Engineering (cont.)

18
physics

track, objects on track, interactions

simlogic
calculations / constraints

input
read in user input

graphics engine
dialogs, windows, views of

track, objects

sound
playback of sounds

data manager
reading, writing data

from/to files

ExpControl
initializes view, flow

control…

SAMjApp
initializes the application,

program entry point

OP/AM
control of hints and

interventions

Object System
management of simulation objects

LoggingManager
gather data, create log entries

ExpStepControl
initializes model, view,

flow control, …

4. Merging and Implementation

• Architecture proposals are very similar
– mainly in the formed classes

– bigger components alsmost the same

– Forward engineered architecture was more
refined

• merged architecture
– model and view layers were merged by combining

the design ideas of both proposals

– control layer was took from the forward engineered
proposal
• subsumed the control layer of restructured proposal

19

Architecture of SAMj

20
physics

track, objects on track, interactions

simlogic
calculations / constraints

input
read in user input

graphics engine
dialogs, windows, views of

track, objects

sound
playback of sounds

data manager
reading, writing data

from/to files

interventions
interventions into tracking

hints
visual, auditve hints

Object System
management of simulation objects

ExpControl
initializes view, flow

control…

SAMjApp
initializes the application,

program entry point

OP/AM
control of hints and

interventions

LoggingManager
gather data, create log entries

ExpStepControl
initializes model, view,

flow control, …

COMPARISION

21

Comparision: architectures

• SAMs
– bad modularization (layers: 1, packages: 1)
– no seperation of concerns
– central issues

• cycles: 56, global variables: 25, bad problem decomposition

• SAMj
– layered architecture (layers: 3, packages: 15)
– designed according to architecture principals
– solved central issues

• cycles: 0,
• global variables: 0,
• better modularization / decomposition

• result: improvement of
– understandabililty
– reusability
– changeability
– testability

22

Comparision: implementations

• Performance
– 8 test runs

• length
• mode of tracking
• speed

– indicator:
TimeDelta

– desired interval:
[30,49) ms

– results
• SAMj: [31, 32],

(31.2 ± 0.34) ms

• SAMs: [57, 178],
(66.5 ± 4.04) ms

Comparision: testing

• unit and integration tests

– SAMs (in use)
• 7 test classes (+ some stubs)

• test cases only for SAMs 1.5

• partially minor quality

• no coverage measures known (lack of utilities)

– SAMj (prototype)
• 20 test classes

• coverage measures

– statement coverage: 96,07 %

– branch coverage: 89,95 %

– Simple condition coverage: 84,10 %

– Multiple condition coverage: 81,68 %

24

Summary

• analysis and documentation of the SAMs
architecture

• development of an improved architecture
– hierarchical layer architecture

– improved quality properties

• implementation of a prototype in java
– improved performance

– quality assurance: unit and integration tests

• comparision of variantes

25

THAT‘S IT!

Questions?

Hints?

Additions?

